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Imposing to a single polymer chain Bf monomers either a fixed pair of forcesf acting at the chain ends
(stress ensembleor a fixed end-to-end vectdR (strain ensemb)edoes correspond to the use of different
statistical mechanical ensembles. In particular, the two elasticity Ryesg(f) andfzg=h(R), whereR; is the
length of the average end-to-end vec{®); in the stress ensemble ariig is the intensity of the average
internal force(f)r in the strain ensemble, are not equivalent. For these conjugated ensembles, the quantity
A;=f—h(g(f)) and more generallp,=(O);—(O)g whereO is an arbitrary observable, is studied system-
atically in this paper for a wide class of polymer models corresponding to chains at temperatures equal or
above the theta point. The leading teﬁff) of an expansion oA\ in terms of the successive moments of the
end-to-end vector fluctuations in the stress ensemble can be used to analyze the scaling propgrti€siof
the Gaussian and the freely jointed chain modalge1/N for large N with the particularity that, for the
elasticity law,A; strictly vanishes for the Gaussian chain at any fiNtd=or chains in good solvent, the usual
resultA;oc 1/N at fixedf is only valid in the highly stretched chain regirtfeincus regimg N independent large
ensemble differences of the order of 20% &dpare noticed when the chain is stretched over a distance of the
order of the unstretched chain average end-to-end distBpc@hese effects decrease to the 1% level for
R¢>3R,. Monte Carlo calculations for a chain model containing both excluded volume and finite extensibility
features illustrate the distinction between the elasticity laws in the two ensembles over all stretching regimes.
Our study suggests that the nature of the constraints used in single chain micromanipulations could be relevant
to the interpretation of experimental elasticity law dg&1063-651X99)15411-4

PACS numbd(s): 61.25.Hq, 05.20.Gg, 83.20.Jp

[. INTRODUCTION rection terms which vanish @¢$™ ! in the limit of infinitely
long chains(see page 321 ifil] and chapter 6 if4]).

The study of the elastic behavior of a single linear poly- To which extent the elastic behavior of a single polymer
mer is a standard application of statistical mechanical conehain with excluded voluméEV) interactions and finite ex-
cepts[1-5]. In this field of renewed intere$6], it is some-  tensibility (FE) is dependent upon the nature of the external
times noticedsee[1,4,5,7) that ensembles corresponding to constraint imposed at the chain ends is the central question
a fixed end-to-end vectdr or to fixed stretching forcesf  on which we focus. Although the general approach we take
acting at the chain ends can lead to distinct elasticity lawsin the present paper could be exploited in other applications,
Long ago, Flory pointed outl] that these two conjugated we prefer to leave for future work elasticity features of par-
single chain ensembles can be seen as polymer counterpatisular biological molecule§6] or universal properties of
of, respectively, the constant volume and constant pressusgretched polyelectrolyteg8]. The chain elasticity in the
ensembles oiN-particle systems. In the latter case, awayglobular statebelow the theta point 9] will not be consid-
from phase transitions, there are correction term@@f 1) ered here as our analysis is restricted to single phase systems
for finite size effects on intensive properties like the energyfar from phase transition boundaries.
per particle, the density or the pressure. To our knowledge, The correct statistical mechanical ensemble to associate
the nature of the equivalent correction terms for singlewith an experimental measurement probing single chain
stretched chain ensembles has never been discussed systgmoperties is an issue of great interest given the actual break-
atically (for general models Elasticity laws relative to dif- through of experimental setups probing directly single chain
ferent single chain ensembles have been compared long ageechanical or thermodynamic properties like for instance
for ideal chain models. The same linear elasticity law fol-elasticity, finite extensibility or adsorption/desorption of a
lows independently of the ensemble chosen for Gaussiachain on/from a surface. In all these experiments, the ends of
chains. For the freely jointed chain modeélJQ, made of N a single chain are controlled externally, either directly or
segments of length, the Langevin function relates tliBn-  indirectly.
posed force on chain ends to the average extension of the In the original experiment of Bustamante's grol40],
polymer while the inverse Langevin function gives the aver-one end of the DNA chain is chemisorbed to a glass support
age internal force for a fixed end-to-end ved®up to cor-  while the other end is chemically bounded to a micron-sized

bead to which well calibrated external forces can be imposed

while the average position of the bead is being recorded by

*On leave from Institut de Maflmeatiques et Sciences Physiques, fluorescence microscopy. Along the same lines, the brownian
Porto-Novo, Benin and presently at the Departimento di Fisicamotion of a hairy polystyrene bead temporarily tethered to a
Universitadegli Studi, L’Aquila, Italy. glass surface by a single chain under bead-surface repulsive
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force conditions was analyzed and the polymer “spring con-self-avoiding walks while in the lovR limit of the fixedR
stant” determined 11]. ensemble, all conformations are close to a cyclic structure
Viovy and coworkers devised another sefdj2] where and EV chain ends are mutually repelling due to forces
the chain is rigidly maintained by a mobile piezomicroman-which are largely of entropic origin: the members of the two
ipulator at one end and, at the other end, by a flexible tubensembles are thus forming two quite different families of
through which light is deviated in a way which has beenconformations. It must be realized here that our attitude is
previously calibrated against known forces within the pi-quite formal as the relevance of the stress or strain ensembles
conewton range. The light deflection angle is then a measurgynsidered in this papéand in standard textbook4,5)) is
of the average internal contractile force for an imposed endpf jittle experimental relevance in ti/R,<1 regime. Real
to-end vector. Atomic force microscofpFM) has been re- single chain elasticity experiments involving micro-
cently developed towards single chain force measurementganipulations on chain ends use needles, beads, or micro-
probing the vertical stretching of a chain grafted on a surfacgupes on which chain ends are grafted: a more realistic study
[13] or detaching a single polyelectrolyte chain adsorbed oryf the effects of the constraints on the single chain elasticity

a charged surfacgl4,1y. . N in the weak stretching regime should then include additional
In order to focus on the single chain elasticity law of acgnfinement effects.

N—Segment linear pOlymer within an ensemble characterized Considering now the Strong Stretching regime of the
either by a pair of fixed stretching forces applied at the chaifixed-f ensemble, it turns out that the end-to-end vector fluc-
ends or by a fixed end-to-end VeCtor, we need to introducﬁiates Oniy Siightly around the mean Sso tha‘[ the two en-
some specific notations. Let us first consider that the polymegemples give almost the same averages for any single chain
ends are subjected to a pair of external foreeSand +f  structural property. A systematic study of the ensemble in-
acting, respectively, on the beads indexed O Bind’he re-  fluence on the elasticity law will however allow us to inves-
sulting average end-to-end vectBf=(ry—ro);, Wherer;  tigate the interesting crossover reginR/Ro~1 which
stands for the position vector of beadnd(- - - ); represents  should be experimentally relevant as, in this regime, confine-
a fixedf ensemble average, can be written Rs=R;f  ment effects are probably negligible with respect to the en-
=g(f)f wheref=1/|f| is a unit vector pointing in the direc- Semble effects discussed in this paper. The difference
tion of f. The relationshifR;=g(f) gives the elasticity law the elasticity laws will be discussed theoretically and then
in the f ensemble fof intensities defined, in principle, over applied to different standard chain models in continuous
the rangeg[ 0,]. When the same polymer is subjected to aSPace. We will consider Gaussian chains, freely jointed
fixed end-to-end vectory—r,=R=RR where we intro- chains, and EV chains according to the end-to-end distribu-
) R : A tion obtained from renormalization group thediRGT). A

duced the unit vector, an average internal fordg="7rR |55t model containing both EV and FE characteristics will
=h(R)R develops within the polymer. These forces, namelyalso be discussed on the basis of extensive Monte-Carlo
+fr and—fg, which act respectively on beads 0 addend  simulations. The adopted hard sphere necklace model is a
usually to contract the chairh(R)>0] but they sometimes semiflexible chain with hard sphere repulsion terms between
act in the opposite direction, as when EV forces between enghonomers. Both fixed-and fixedR elasticity laws can be
beads give rise to a repulsion at short distafftéR) <0].  extracted from such simulations which in addition, are useful
The relationshigfg=h(R) is the elasticity law in the fixedR  to test the domain of validity of RGT and the nature of the
ensemble which, in principle, covers valuesRoih the range  crossover behavior between the scaling regime and the FE
[02]. We will consider the differencé;=f—h(g(f)) be-  region, the latter region being actually the main focus of the
tween these force intensities as a measure of the non equivaew experiments on single molecule stretching. The tech-
lence of the elasticity laws in both ensembles. nique we used in our simulations, namely the configurational

The fact that we focus on this particular manifestation ofbiased Monte Carlo method adapted to stretched chains, has
the distinction between both conjugated ensembles does naiso been implemented to study the elongation of a realistic
imply that it is the only one. Other single chain properties ofchain model of polyethylene but this topic will be discussed
a stretched polymer like its gyration tensor, the NMR re-elsewherd 16].
sidual dipolar interaction or the chain structure factor in scat- It should be recalled at this point that Monte Carlo calcu-
tering experiments should also depend upon the nature of tHations have been successfully applied within the context of a
applied constraint. Even if these applications are not dissingle stretched EV chain, starting with the work of Web-
cussed in the present paper, we give the theoretical basis than, Lebowitz, and Kalogl7] which demonstrated the ex-
establish the connection between the averages of any obsefigtence of a Pincus blob regime in the intermediate regime of
able calculated in the stress or in the strain ensembles.  the elasticity law. The behavid;> (") =1, wherer~0.6 is

The nature of the difference between the fiXednd the Flory scaling exponent for good solvent conditions, re-
fixedR single polymer conformational ensembles is for- mains today a property which was originally predicted theo-
mally similar for any particulaR (or f) value but, as well retically [18], subsequently checked by simulatigis], but
qualitatively and quantitatively, the effect turns out to benot yet directly verified experimentally. Much later, Wittkop
radically different for the small and the large extension re-et al.[19] performed a more extensive Monte Carlo study of
gimes defined, respectively, biR/Ry<1 and R/Ry>1, the same single EV chain elasticity law, showing that RGT
where R, is the averagein the mean square sensef the  correctly predicts the cross-over between the linear stretch-
unstretched chain end-to-end vector. ing regime(at weak forcesand the Pincus blob regime. In

In the low{ regime of the fixed- ensemble, the EV 1995, Cifra and Bleh&20] studied the effect of varying the
chains are usudweakly perturbefithree-dimensional3D)  solvent quality on the elasticity law, in particular the separa-
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tion between enthalpic and entropic contributions to the Re 1
stretching force. Recently, two of J21] reported Monte R~ 37 1)
Carlo results on the scattering function of a stretched chain 0
showing the signature of Pincus blobs on the structure factor. ) . )
It is interesting to note that, with the exception of Cifra and e effective spring constait which relates the exten-
Bleha's work which follows a fixedR statistical mechanical SIO" Ry 10 the stretching forcef, f=kR;, is thus k
formulation, all MC works mentioned above are formulated=3KsT/Rg.
in the fixedf ensemble. A different stretched chain ensemble
where only one component of the end-to-end vector is con- B. Pincus blob regime
strained has been used in a recent series of MC studies . . o .
[22,23 aimed at studying the coil-globule phase transition _For forces in the range* <f<f** =(kgT/b), i.e., when
under stretching. As transverse end-to-end vector fluctud-li€s in the domain whereg,>1 and the local reduced force
tions are sampled while they are frozen in the fixed”=(fb/kgT)<1, the universal scaling corresponds to the
R-ensemble we considdwhere the vectoR is fully con-  So-called Pincus blob behavifit8,24
strained, the elasticity law in this unusual ensemble should R
be intermediate between the two cases discussed in the _f:An(UV*l), 2)
present paper. Ro ?

Our paper is organized as follows. In the next section, we
start by defining quite generally the different single chainwhere A is a constant. When excluded volume forces are
stretching domains to which we will refer throughout the absent, one has=0.5 andA=1/3 so that Eq(2) extends the
paper. In Sec. Ill, we remind the statistical mechanical for-validity of the small force linear law of Eqd) up to f** .
malism required to derive the elasticity law in both the fixed-For EV chainsA~0.46[17,21].
f and the fixedR ensembles which enables us to properly
define the central quantith; mentioned earlier. We then
evaluate exactly this quantity for various standard chain
models relative to chains at the theta point or in good sol- Finally, when the force is such thdt=f**, the finite
vent. We cover here ideal chaifithe Gaussian and the FJC extensibility (FE) regime is entered and a model specific
casep and EV chains using the RGT end-to-end vector dis-behavior follows. This is the region which is most studied
tribution of unstretched chains. In Sec. IV, we establish twoexperimentally{6,13].
formal expansions of the average of an arbitrary observable
(O)¢ around(O)r computed in a fixedR conjugated en- D. About the N dependence oR; at fixed f
semble. We discuss various convergence aspects of these

expansions for the different chain models. For the particula[\I dependence of the averaae end-to-end vector at fiked
case ofA; whereO is simply chosen to be the internal force P . Y .
the different domains. In the linear regime, thelependence

acting on the chain ends, we find a leading term in the ex:

. : is related to the spring constant varying ds2”. For both
pansion, namely the second order expressmﬁ?, which : . - L :
turns out to be a good approximation &f in the R/Ry>1 the Pincus blob regime and the finite extensibility regime

: i ) . sometimes collectively denoted as the strong stretching re-
stretching domain. In that case, scaling propertied ptan ( y 9 g

b . qf h ) he |  thi gime in the following, the average extension scales Ideat
e estimated from those dfy”". In the last part of this sec- gyaq 4 pehavior expected when the extension of the

tion, Monte Carlo calculations relative to the hard-spheregi atched polymer overcomes the size of the unstretched
necklace modefwhich combines FE and EV characterisjics chain[24].

are presented. Conclusions and perspectives are gathered in
the final Sec. V.

C. Finite extensibility regime

For later purposes, it is useful to discuss at this stage the

E. Typical force crossover values in experimental setups

Crossover value$* and f** for some micromanipula-
Il. SINGLE CHAIN STRETCHING DOMAINS tions on stretched macromolecules at 300 K reported in the
Consider a linear polymer dfl Kuhn segmentgwe sup-  introduction are easily estimated on the basis of published
poseN>1) each of sizé undergoing Brownian motion in a values of the contour length. of individual chains and of
solution at temperatur®. The average end to end distance ofthe Kuhn segment length which combine to giveRj
the chain isR,~bN” wherev is the scaling exponent equal =Lcb. For a DNA chain of length..~30 um in physiologi-
to »=0.5 or v~0.6 for # and good solvent conditions, re- cal conditions for whichb=0.1 um [10], one findsf*
spectively. When this polymer is subjected to stretching=0.003 pN andf** ~0.05 pN and we note that, in Ref.
forces=f at its ends, the average end-to-end distance showd.0], data points are reported foef** . The AFM study of
three distinct regimes which can be predicted by scaling arindividual dextran filaments leads i =0.2 pN andf**
gumenty18,24,11. =7 pN usingb=0.6 nm and_.~1 um [13]. Exploring the
power law regime would be rather difficult &should be of
the order of a few pN while natural fluctuations seem to be of
the order of 20 pN. Improved precision could however be
At small forces[f<f*=(kgT/Rp)], the relative exten- obtained by averaging over many successive stress or strain
sion increases linearly with the global reduced forgg  cycles over the range of end-to-end vector lengths of interest
=(fRy/kgT) [23].

A. Linear regime
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lll. FIXED- f AND FIXED- R ENSEMBLES FOR A SINGLE U U 1 o[ INW,(R,N)]
POLYMER CHAIN <_ﬁTO> R=< m> R:_Eﬁ—R
A. A reminder of textbook statistical mechanics
We now establish the theoretical context more explicitly _IARN) —f R=h(R)R ©
by starting from the equilibrium distribution function of the dR R '
chain end-to-end vectd®=ry—ry which in the absence of
external forces is defined as The equationfg=h(R) defines the elasticity law in the
fixed R ensemble.
N L . N In the fixedf ensemble, the end-to-end vector fluctuates
B j dr78(r=ro=Rjexd = AU (r ] Z around a nonzero vectdR); parallel tof. The relevant par-
Wo(R,N) = Tz tition function become$l]
f drNexgd —BU(r™M)]
3 zf(f,N):f dR Zg exp( Bf-R)

whereB=(1/kgT) is the reciprocal temperaturg,is theith

bead positionU(r V) is the effective potential energy with =Zf dRWy(R,N)exp Bf-R). !
(rN) representing the set of coordinates of the chain,&isd
the Diracé function. The potential energy consists of a sum
of bond length constraining potential ternfimsuring the
connectivity and possibly EV pair interactions. The numera-
tor Zg and denominatoZ in the above equation are single
chain partition functions for a constrained and unconstrained (O)f=Z{1f drNOo(rMexp{— BLU(N)— (ry—ro) - f]}.
end-to-end vector, respectively. As usual, we associafg to (8)
the Helmholtz free energy

The f ensemble average of a microscopic variaDig)
will be written as

It follows from the above equations that the average and
ARN)=—B"1InZg=— B LInW,(R,N)+ C(N) fluctuations of the end-to-end vector are given as partial de-
’ ' ' (4 rivatives ofZ; according to

19 . .
where we have indicated thd and R dependencies. Note <R>f:E ZInZi=Rif=g(Hf, 9
also that for any Cartesian componantx,y,z, the first
moment of R, with respect toW, vanishes due to space
isotropy While the second moment givéRé. <5R5R>f=i i im Zle &g_(f)fﬁ @(1_% ,
In the fixedR ensemble, the average of an observable p2 of of B\ of f
o(r " is given by (10

where SR=(R—Rf).
<O>R:Z§1f drNO(rN)s(ry—ro—R)exd — BU(rV)]. The first equation defines the elasticity lai,=g(f), in

the f ensemble and states that the average elongation in a

® direction transverse tbvanishes by symmetry. Fluctuations
are still given in terms of(f) and its first derivative. If we
Under the end-to-end vector constraint, the chdite  denote, respectively, a8R; and R, the longitudinal and

—(dUlary) yields the average internal forég acting on the  transverse components of fluctuations in the fikedn-
end-bead 0 which lies alorig= (R/R) by symmetry. To see semble, we obtain from Eq10)
this explicitly, let us substitut® in Eq. (5) and let us use the

identity <5Rﬁ>f=% &%(ff) : (1
au _dlexp(—BU)]
—8—roexli—BU)=/5’ 1<9—r0' <5Rf>f:%%f) (12

Integration by parts transfers the application of the derivative The nonequivalence between fixédand fixedR en-

to the § function. Given the nature of the argument of #he sembles shows up in the fact that the relationships
function appearing in Eq(5), the gradient operation with =h(R) [Eq. (6)] and R;=g(f) [Eq. (9)] are not inverse
respect tary can be substituted with a gradient with respectfunctions of one another. The functidyy introduced earlier

to R so that the expression turns out to be finally equivalento measure this ensemble difference can thus be expressed as
to the gradient of W, with respect tdR [see Eq(3)]. Keep- A¢=f—h(g(f)). Alternatively, the same ensemble depen-
ing consistency with notations used in the Introduction, wedence of the elasticity law can also be formulatedAgs

thus have =R—-g(h(R)).



7014 J. T. TITANTAH, C. PIERLEONI, AND J.-P. RYCKAERT PRE 60

B. Elasticity laws in the two stretched chain ensembles 0.30
for specific models

In this section, we use the above theoretical framework to  °®[

estimate the importance of the ensemble effects on the singl
polymer elasticity law for standard chain models. We will 020
treat the universal models for ideal chains and for chains in
good solvent and finally look at the freely jointed chain to 3 .
appreciate the ensemble effects when finite extensibility is
incorporated in the model.

5

0.10 |

1. Long chains at or above th@ point
0.05 |
If we restrict ourselves t@ and good solvent conditions,

the equilibrium end-to-end vector distributiowy(R,N)

evolves, as the number of monométsncreases, to an ex- 0 6 7
pressionW,(R,N) o (C/R3)w(x) wherew(x) is a universal x=R/Ro
function of the reduced distance=(R/R,) and where the FIG. 1. A;/f is shown as a universal function of the reduced
explicit N dependence is left into the measure only. We havetensiork=R/R, for the RGT model. The lines) represent the
[26] direct differences while the dashed lines (———-) show the predic-
tions of A{?) according to Eq(43).
Wy(R,N)dR — Cx”exp(—Dx°)dx, (13
N— o
<5Rﬁ>f _S3 (C2>2+ 1 (16)
2 < \o 2

whereC is a normalization constant andthe reduced end- Ro S1 181 g
to-end vector. The RGT parameters for good solvent chains )
areD=1.2063, 6=(1—v) 1=2.4272, andy=0.275 while, (ORT)s 1 ][ nyc,
for Gaussian chains, we simply hae=3,5=2.0, andy RZ ,]_5 s -1} (17

=0.0.
For later purposes, it is important to note that the rel- \yhere we have defined

evance of this distribution for finite chains idealized Mds

Kuhn segments of length, is restricted to the range<R w .

<Nb [24]. Within the fixedR ensemble, the force function Si(mg)= f dysinh(gy)y' Y exd —DyY*"*], (18)

fr=h(R) can be obtained by applying E@) to the particu- 0

lar expression13). Using reduced quantities, one gets the

general result Ci(7g) = fo dy cosh ngy)yuyexq_Dyuky]_ (19)

. __7 D -y
BRofr= 1=~ §+ (1-v) X (14) For chains in good solvent satisfying the universal distri-

bution function Eq.(13), the elasticity laws in fixed- and

which reduces to the linear la@R,fr=3x in the Gaussian [1XedR ensembles, i.e., EqeL5) and(14), respectively, are
case. foqnd to be quite different. '_rhls is shown inFig. 1 where the

Alternatively, we get the elasticity law and the end-to-endUniversal behavior ofA{/f is plotted against the reduced
vector fluctuations relative to the fixdidensemble by apply- distancex. The difference is smallbelow 2%) for chains
ing to the particular end-to-end distribution functicir8) the stretched over distances at least three times their typical un-
series of Eqs(7), (9), and (10). For Gaussian chains, the Stretched chain valug>3R,), it amounts to about 20% for
linear law Ry =g(f)=Rq(7,/3), turns out to be identical to R~R, and it diverges as the distance decreases to zero. The
the elasticity law[Eq. (14)] in the fixedR ensemble. The elastic behavior of chains in good solvent thus presents quan-
end-to-end vector fluctuations in the fixédnsemble. which titative differences depending upon the nature of the stretch-
can be obtained directly from(f) on the basis qu{l'l) and Ing constraint. These effects culminate at short end-to-end

(12), are independent of and thus identical to the un- distances R<R,) where both distributions of conformations
streiched case. are intrinsically different as we mentioned in the Introduc-

For EV chains. the end-to-end vector moments in fthe tion. This is however a regime of little experimental rel-
ensemble, namely; , <5Rf)f, and (5R%);, can be esti- evance as confinement effects should be taken into account.

mated numerically on the basis of Eq8), (11), and (12) The effect; observed for EV chains in tﬁEregim-eRo<R
(see also Ref(19]). For completeness, we give the expres-<3RO' which corresponds to the crossover regime between

sions to be evaluated numerically in terms of the global re-the linear and the.P'incus f?gime discussed. i.” sec. ll, S.h.O.UId
duced forcer, be observed for finite chains as long as finite extensibility
g!

does not interfere, a feature which is ensured as soon as

R 1 3R,<Nb, i.e., whenN>3%2, Finite extensibility effects will
L (779_02> _1}, (15)  be specifically considered in the next section for the FJC
Ro gL\ S1 model.
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Let us finally remark that the ideal chain resil{=0,
which is valid for arbitraryN, is somewhat surprising when
one considers that, at least at short end-to-end distances, tt
distribution of conformations is very different in the two
ensembles. We will see the origin of this absence of con-
straint effects on the elasticity properties of Gaussian chains
in the next section.

i

2. The FJC model: Finite extensibility effects

The FJC model is the prototype of an ideal chain with
limited extensibility. This model ofN freely jointed rigid

bonds of lengtth evolves towards the Gaussian modeMNas il S 1
gets large, as long as the end-to-end distaRceemains —— . . . . . .
much smaller than the contour length of the chihj=Nb 0 01 02 03 04 05 0s TR
[1,4].
To analyze the FJC elasticity law in the fixBdensemble, FIG. 2. A;/f is shown as a function of the reduced extension

we exploit the known expression &/y(R,N), namely an y=R/L. for the FIC model witiN=16, 32, 64, and 128. The lines
integral over reciprocal space to be evaluated numerically—) represent the exact differences while the dashed lines (——-)
[1]. The average force intensity(R) estimated using Eq. show the predictions ofA{?) according to Eq.43). The dotted-
(6), requires an additional integral over reciprocal space to bdashed lines are polynomial fitsee text

calculated. We have
IV. THE CONNECTION FORMULAS BETWEEN FIXED- f

AND FIXED- R ENSEMBLES

1
Wo(R,N)= zszsl’ (20 In the previous section, we have shown that single chain

elasticity laws are in general different in conjugated stretched
, chain ensembles. While the effect is accidentally zero for

h(R)= E_ C2 (21) Gaussian chains, the relative differense/f is below the
R Si’ percent level only when EV chains, independently of their
length, are stretched over a distance which is larger than

where we have introduced more general compact notatiori§ree times their equilibrium end-to-end distance. Finally, for

(which will be useful for later purposgs FJC chainsA¢/f~1/N over a wide range of local reduced
forces <4, providedN is larger tharn~15.
- _ sin(gb) |V In the present section, we express the difference between
s = J dgd sin(qR)[ b , (22)  the ensemble averages in terms of a series expansion with the
0 q aim of clarifying to which extend the properties ®f we just
) summarized, can be understood in terms of second order
;T i sin(qb) | fluctuations ofR at fixedf. In order to enlarge the potential
Ci —f dq d coggR) . (23 Co . i .
0 gb applications of our theoretical analysis, we will study the

single stretched chain ensemble effects on the averages of an

Alternatively, the partition function for the FJC at fixéd arbitrary structural property denoted by an observable
can be evaluated analytically by straightforward calculation€(r'"). At the end of the section, we will return to the elas-
[4]. The average end-to-end vector and its fluctuations afiCity case on which we focus in this paper.
fixed-f [see Egs.(11) and (12)] are easily obtained. One
finds the classical resultRi/L.)=y=L(7n) where 7 A. General formalism

=(bf/kgT) is the local reduced forcg is the relative ex- We want to compare the averages of an arbitrary observ-
tension, andC(u)=coth()—1/u is the well-known Lange- 4hje( in the strain(fixed-R vectoh and in the streséfixed-
vin function. Use of Eqgs(11) and (12) leads to fluctuation ¢ vecto) ensembles. These ensembles imply vector con-
expressions (SR =Nb[1—2L(n)/m—L*(m)] and : racti :

pz e A )1 7 straints along the same directidsay along thez axis),
(6RL)1=NbL()/ . _ _ namely f=(0,0f) and R=R;=(0,0R;) where Ry=g(f)

In Fig. 2, we show the behavior ak¢/f for various [Eq. (9)] or R=(0,0R) and f=fz=(0,0fg) where fg
lengths according to the FJC modeN€{16, N=32, N  =h(R) [Eq. (6)].
=64, andN=128) in terms of the relative extensigncov- On the basis of expressiofid), (4), (5), (7), and(8), we

ering a force rangey <4.0. The results clearly show that, as can write the basic relationship between ensembles averages,
predicted by Flonf1], the ensemble effects on the FJC elas-namely

ticity law are dominated by a i/ term. We note that\;/f
decreases below the 1% level for chains with-100 but -1

amounts 10% for thé&l=16 case ay=0.75. The Gaussian (O)=2; f dRZg(O)rexp( R )
chain limit for the elasticity law ensemble difference
(namelyA;/f=0) is indeed recovered from the FJC result,

_ -1 _ “R.
for y<1, whenN goes to infinity. =Z de<O>ReXp[ BLA(R,N)—R-f]}. (24)
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A systematic and formally exact expansion of this equa- N
tion can be obtained directly by replacing the observable <O>f:Z_J dr(O)n, exp(—N[Ba(r,N)—gr-f]), (29)
average(O)g on the r.h.s. of Eq(24) by its Taylor expan- f
sion aroundR=R; and by performing all integration25].
This expansion that we will denote 1 leads to an infinite wherea(r,N) is the free energy per segment for a chain at
series in terms of averages of end-to-end vector fluctuationixed end-to-end vectoR=Nr. This expression resembles
of all orders in the fixed-ensemble: note that the first order the fixed volumef/fixed pressure ensemble transformation re-
term is zero but has been kept here to indicate the structurd@tion for aN-particle system on the basis of which finite size
of the infinite series, effects are derived in statistical mechan[&§]. Equation
(29) suggests that thdl dependency of the series based on
d the steepest descent expansion should be examined while
ﬁ<O>R) (OR)s keeping(r) constant. The underlying motivation is that one
R=Ryf expects that the differences between ensembles should van-
1(9 9 ish for N infinite.
+§(ﬁ ﬁ(O)R) A:<5R6R>f+ <., (25 While series expansiorEl [Eq. (25)] is formally exact,
R=Rf getting more than a leading term E2 [Eq. (28)] is not a
trivial case. These difficulties arise when considering third
The expansion in E¢25) is exact and directly compares order correction terms in the free energy expansion required
ensemble averages in the fixédnd fixedR conjugated en- by the steepest descent technique or when finite chain size
sembles for force intensitly and end-to-end vector length set corrections ina(r,N) need to be taken into account. Fortu-
to R=g(f), respectively. However, its convergence, is diffi- nately, in usual cases whehl is sufficiently large for the
cult to assess in general. single bond free energy(r,N) to become intensivéat fixed
Another series expansion, call&®, can be obtained by (r)), and as long as the averag@) is at least quadratic in
applying the steepest descent technifRigl. In order to re- R, the leading term of order W/ given by Eq.(29) will fairly
place the fixed-distribution by a multivariate Gaussian dis- well represent the ensemble difference. However, if we
tribution, one has to develop, to second ordeRinthe ex-  choose to study the ensemble effects on the elasticity law
ponentB[ A— R-f] around its minimunR,,f. The location of ~ with the choiceD=ry—r on the basis of Eq28), the lead-
the free energy minimum is the solution of the implicit equa-ing term vanishes for that particuléinearn observable and

(0)1=((O)R)r=R}i+

tion the next term in the expansion will require the consideration
of higher order terms. We have not attempted to follow this

JA(R,N) route any further in the present work.
f= JR (26) Because of the above difficulties when dealing with ex-

pansionE2, we will exploit mainly expansiorEl when
which, by using Eqs(4) and (6), yields R,=h"%(f). The dealing with the difference between fixédand fixedR av-

covariance matribxC(R,,) is given by erages of an arbitrary observable relative to the stretched
chain system. We will analyze the structure of the single
C YRy =B[VRV RA(R,N)]R:Rmf bond free energy for each of these models. More particularly,

we will investigate the convergence of the expansih

.. h(R) ..[dh [Eq. (25] whenN and possiblyf are varied.
=[-,{(1— RR) ——+RR ﬁ) . (27)
" B. Link between ensembles for specific chain models
Subsequent Taylor expansion(@)g aroundRy(f) up to Let us start by adopting fow, and its associated free
second order provides the leading term of the series expa@nergy expression the universal model function for theta
sion in terms ofR, and C(Ry,) point and good solvent polymers defined by the distribution
(13). We have
1/ 0 0
<O>f:(<O>R)R=Rmf+§<&_R&_R<O>R) B CC(Rp) - R | Y17 R
R=Ryf BARN)=D| — —yIn| — | +K, (30
(28) bN¥ bN”

The developmenE?2 again relates averages of an observ- _ _ . o
able in conjugated ensembles. However wiile [Eq. (25)] whereK is a constant. Note that by adopting this description

relates ensembles with identical end-to-end vector and’€ neglect finite extensibility effects, i.e., we are limited to

slightly different forces, the steepest descent expangi®n R<Nb. ) ,

treats ensembles with the same fofdrit differentR values, The free energy per bond derived form Eg0) is

namelyR; for the fixedf ensemble andR,, for the fixedR

ensemble. )\ Ha=-v) r\ K
ExpansionE2 is a priori more transparent when discuss- Ba(r,N)= D(B) - NIH(E N (32)

ing the convergence of the series. For that purpose(Z).
can be rewritten in terms of a new intensive variable
=R/N, which becomes intensive whei— oo,
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1. Gaussian chain universal model where theN dependence is no longer explicit.
In this case,y=0, D=2, and v=1%. From Eq.(31) we In terms of stretched chain ensembles, the variable conju-
observe that the free energy per bond is strictly intensive ang@ated to the reduced end-to-end vectois 74 as pf-R
is quadratic inr. The probability distribution in Eq29) is = 74-X. In these variables the ensemble tranformation rela-

Gaussian so that the steepest descent technique can be p#n become

formed easily to yield expansioB2 as an explicit infinite

series expansion. It is easy to show that expanstthand _ B =

E2 are identical in this particular case where the unique elas- <O>’7g_ Z dx(O)x exp—[BAX) = 7g:x])  (36)
ticity law in both ensembles guaranteRs=R,,. Following ¢

expansiorEl, one has andZ, =Z;.
9
119 Equation (36) strictly deals with infinite chains but, as
(0);=(O)g +_(__<O>R) (O )+ (32 already noticed, this universal behavior applies to finite
to2\grar R=Nr chains in theR domain where FE effects are not probed. We

thus stress here that the conjugated ensembles for EV chains
Jd d o are never equivalent at finitgy . It must be emphasized that,
o E< )R . while ensemble effects tend to disappeaNagrows at fixed
B forcef (i.e., increasingy,), the same effects are unaffected in
where (r ér); and higher order terms are moments of athe combined limitN—o,f— 0,74 fN” constant. The sec-
three-dimensional Gaussian distribution giving terms in asond order expansions QO},, SImIIar to Egs.(25) and(28)
cending integer powers &~ *. to transform ensemble averages between conjugated en-
For regular(O)R functions and for moderately largs, sembles remain relevant, but the convergence of the expan-
the above series should always converge to a finite valussions is clearly controlled byy,. For largery, which cor-
Note that in the particular case whei@) is linear inr, like  responds to a highly stretched state which can result from a
it is precisely the case for the internal forbéR) [see Eq. large polymer sizé\ at moderatd, a large force at moder-
(14)], (O)s is strictly equal to(O)Rf for any finite N and  ate polymer size\ or both largef and N, the series should
arbitrary f because all terms of the series vanish. This isquickly converge. When values of, decrease to a value
consistent with the equivalence between elasticity laws relaclose to unity, the convergence must be controlled empiri-
tive to both ensembles which was noticed for Gaussiar¢ally and more terms in the expansions may be necessary to
chains with finite number of beads in the previous section. get A with accuracy. We will illustrate this point with the
elasticity law in the next section.

1b?

:<O>Rf+N€ +"', (33)

2. EV chain universal model

For EV chains, the single bond free enerdyg. (31)] _ _
leads to a minimum of ga(r,N) — Br -f), as required in the The link between stretched chain ensemble averé@égs

3. Some comments about the FJC model

E2 expansion, which is given by and (O)g for the FIC model furnishes additional insights
about the FE effects. We first note that the stretched chain
D (r\Y oy free energyA(R,N), its first derivative respect tB which is
pri-— (1-v)\b N 34 the forceh(R), and, if required, its higher derivatives can be

calculated numerically using E€R1) and its derivatives eas-
whose solutionr,, is N dependent. When the r.h.s. of Eq. ily expressed in terms of higher order coefficieatsandc’
(34) can be neglected, i.e., whgfr>(0.275N), one finds defined in Eq(23). Using the above quantities calculated for
N up to 128 over the range<97,<4.00 corresponding to
_((1—1/))(1”)’” (1= ) Ly =<0.75, one expects that thedependent part of the free
Fm= (Bf) b : ;
D energy per monomer presents a size dependence term domi-
nated by a M and then a M? term. Moreover, as for the
which gives an extensioR, following the Pincus scaling FJC model[1,4]), A;=f—h(g(f)) at arbitraryf vanishes in
expressionR,,~g(f) given by Eq.(2). Accordingly, the the infiniteN limit, one should have
above condition can be interpreted in terms of the concept of
r)z 1(9 b b (r)“
b) T2l5T N\ 2)\b) T

! n

tensile blobs afR>0.275,, which indicates that, for a 1 a
fixed f value and thus for a fixed Pincutensile blob size  Ba= 5 3+ W+ N2
Ioiob=(Bf) "1, the number of monomers should be large

enough for the polymer extension to be several times the (37

blob size[24]. Physically, this means that the chain must be a N (9 b b

in the strong stretching regimey¢>1). . Bh(Rb=|34+—+ —| =+ = —F— || =] +--,
The central role played by, in the stretched chain in N N2/b |5 N nN2/ib

good solvent calls for some additional remarks. The Helm- (38

holtz free energyA(R,N) of unstretched EV chains, namely _ o
Eq. (30) which follows from Eqgs.(3) and (13), can be ex- Wherea’, a”, b’, andb” are numerical coefficients. We

pressed as a function of a single variakle R/R, exploited our data oa and its derivatives for varioud to
determine empirically these coefficients by polynomial fits

BA(X)=DxYE"") — 5 In(x) +K, (359 and we found a’=-—3.00, b’=—-4.50, a"=1.2684,b”
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=1.68. In Fig. 2, we see that expressi(8i7) reproduces A$2)=%[<5Rﬁ>szz+<5Rf>f(Txx+Tyy)] (41)
indeed theN andr dependence oA for r=<0.4. The link

between ensemble averages for an arbitrary obsery&ble r 2

relative to the FJC model is given by EqR9 where the :i a_g(a_r; @[E<@_ E) }
free energy term is obtained from E&7). The maximum of 2B| 9t\ IR R=g(f) f[RIIR R R=g(f)
probability is given by the solution of E¢38) which, at low (42)
N, gives aN-dependent ,, value. AsN increases, Eq(38) )

must evolve towardgfb= L ~(r/b). The connection be- 1 [ag [ a°h 2(dh h

tween conjugated ensembles averages will again be domi- 23| 4f | 9R? Rea() floR R Reg(h) (43

nated by a I term.

Using Egs.(6), (7), and(9), the expressiond; and A{?
C. Second order approximation applied to the elasticity case ~ ¢an be evaluated for any model for whidho(R,N) is
known. In Figs. 1 and 2, we show, respectively?) for the

The series expansion E(5) defines a second order term universal EV case and for the FJC model. For the EV model,

which should 'domlnatao proylded that.we are in the con- o approximation is quite good for the range R, but for
vergence regime of the particular chain model considere

We will again focus on the elasticity law and thus select the =Ry, higher order terms in the expansion should be taken
. g_ city into account. For the FJC case, the second order estimate
variableO= —(dU/dz,) wherez, is thez component of the

. . . improves quickly asN gets larger.
end bead positiom,. In the fixedf ensemble, mechanical - I fi in the highl h hai
equilibrium imposeg — (9U/dzp)); = f while, in the fixedR Quite generally, at fixed in the highly stretched chain

ble. Eq(6) ai regime, we know that botA(R,N) andR; become linear in
ensemble, Eq(6) gives the chain lengtiN [24]. In that regimeA can then be shown

U R to vanish like 1N for large N chains, independently of the
<—a—> =h(R)Ez chain model. This can be proved using the approximation
%o/ r A§2)~Af valid in that regime. One takeR;=Nz(f) and

fr=h(R)=w(R/N) where z(f) and w(r) (with r=R/N)
are close to being inverse functions of one another. Substi-

whereR,; is the z component of the end-to-end vector. Theftuting these formal expressions &{2) [Eq. (43)] gives

quantity A; introduced earlier in this paper as a measure o
the distinction between the elasticity laws in both ensembles,

2
can indeed be expressed as A(Z):i gz ow + 2(ow_w (44)
PN of\ ar?) flor ) .
r=z(f) r=z(f)
A= — AT thus indicating a ™M dependence at fixefl{and thus at fixed

f 9o/ 92/ 5 r=R/N) in any strongly stretched regime such as the Pincus
blob regime for EV chains or such as any type of FE regime.

_ R, D. Monte Carlo calculations for the stretched hard-sphere

=f={h(R) =) necklace model
R=R{

The semirigid necklace model we now consider consists
in N+ 1 hard spheres linearly connectedMyigid bonds of
=f—h(Ry). (390  lengthb. This 3D continuous space model is convenient as it
combines most aspects of real polymers in good solvent con-
ditions, namely EV and FE effects. We report in the follow-

Adapting Eq.(25) to our case provides us with the fol- ing a Monte Carlo study of a stretched polymer based on this
lowing second order approximation far;, model with a hard sphere diameter=0.6% which garan-
tees that EV interactions are operative at all length scales in
the absence of external forces. The particular d&se400
with unperturbed siz&,=36.81 [21] was selected for our
purposes as such a chain size is sufficiently long to display
all stretching regimes of the elasticity law.

The adopted MC method combines configurational bias
sampling and reptation mov¢&8]. A stretched state of the
(SR SR); T, (40) polymer [i.e., u_nder fixed exterr_1a| forcef=(0,0,=1)] is _

studied by adding to the potential energy term, a stretching
work

AP =1(sR 5R>f:{ (h(R)E)
JR IR R

N -

where the tensof is introduced for convenience. Using di- T=-fR, (45)
agonal properties of the fluctuation tensor and according to

Egs.(10), (11), and(12), Eq. (40) can be transformed, using which is a function of the instantaneous value of the end-to-
Eqg. (9), as end vectoR. Running the program for variodwvalues gives
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FIG. 3. Elasticity law in the constant stress ensemble for the
FJC model (-—-), the RGT predictigr-), and our fixedf MC FIG. 4. Fluctuations of the end-to-end vector components both
results OOOQO), with N=400. parallel(lower) and perpendiculatuppe) to the stretching force of

a 400 segment EV chain. The dashed lines (——-) give the RGT
prediction. The continuous line{) results from exploiting the link
between the fixed-end-to-end fluctuations and tlggf) behavior

for the rangen,>0.2, which is shown in Fig. 3see also text

the evolution of the average end-to-end ved®yy, i.e., the
g(f) data shown in Fig. 3, and its fluctuations shown in
Fig. 4.

In Fig. 3, the simulation points are compared to the RGT
model prediction Eqg. (15)] for a polymer with unstretched seen to match the MC data up ig~0.3. At higher forces,
sizeR, adjusted to the actual value of the 400 bonds polymefFE effects lead to a more rapid decrease of the fluctuations, a
treated by MC, and also to the 400 bonds FJC prediction, &ehavior fully coherent with the correspondig¢f) evolu-
model to which our MC necklace model reduces when theion given in Fig. 3. This is actually shown by plotting in Fig.
hard-sphere interactions are suppressed. We observe that #hehe (high stretching expected behavior of the fluctuations
MC results are quite well represented by the RGT curve aas obtained by Eq9.11l) and (12) obtained by numerical
low forces[19]. Beyond 7,~0.3, the data exhibit a smooth differentiation of theg(f) data in then,>0.3 regime(see
crossover to a FJC behavior. Fig. 3.

Figure 4 shows the fluctuations of the end-to-end vector On the other hand, the unperturbed end-to-end vector dis-
components of the same 400 segments EV chain treated lgibution of the chain is needed to estimate the internal force
MC and the corresponding RGT predictions for longitudinalat fixed end-to-end distance according to Hj. It is useful
and transversal fluctuations. In terms of reduced quantitiesp note that the distribution function & in the presence of
the theoretical expressions given by E¢E5) and(17), are  stretching forces, namely

J dr &(ry—ro—R)exd — BU(rN) = (ry—rq) )]

W(R,N)= (46)

J'drNexp{—ﬁ[U(fN)—(rN—ro)'f]}

can also be used to get the distribution in the absence dénsions of the order of 40% of the chain contour length
force, i.e.,Wy(R,N) of Eq. (3), by exploiting the identity where the probability density is reduced to 2@f its maxi-
mum value. As expected, the RGT curve shown in Fig. 5
Z matches very well our data as long as FE effects are not
Wy(R,N)= fexq—ﬁR-f)Wf(R,N), (47)  showing up. The crossover to the FE regime seems to occur
somewhere betwedR= 2R, andR= 3R, where we observe
N ) . that Wy(R,N) starts decreasing more rapidly towards zero
where theZ andZ; partition functions are defined by Ed8)  than expected from RGT. In order to reproduce this new
and(7), respectively. By superimposing the distributioNg  behavior by a smooth analytic functigto ease further deri-
obtained by Eq(47) within our set of simulations at various vation), we used folR>2R, the same RGT expressidEg.
fixed forces, the profile ofV, was retrieved over a large (13)] but with the exponen$ and the coefficienD consid-
range ofR values as shown in Fig. 5. This combination of ered as free fitting parameters. The inset of Fig. 5 shows the
biased samplings leads to a precise estimate of the distribuesulting best fitting curve describing the data abdve
tion up to end-to-end distances B4.5R, i.e., up to ex- =2R,.
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T — in connection with the single polymer elasticity law at or
FE: Bostfit -~ . above the theta temperature. Actually, our approach has been
| more general: we have given some general tools to appreci-
ate, for a generic observab(® the distinction between av-
erages computed in the two stretched chain conjugated en-
sembles. We found that the correction tefrg can take the
form of an infinite series, thath term being the product of
an averageth order fluctuation term in the fixeldensemble
and anth order gradient respect to the end-to-end vector
components which is computed at the average end-to-end
vector value(R); . This series always converges for Gauss-
° ian chains(because of the fluctuation term ophyhile, for
chains in good solvent represented by the RGT theory, it

shmsb s ———— converges only in the high stretching reginRXR).
x=R/R, The elasticity law in the stress ensemBle=g(f) plays a

central role in this paper. When convergence in Mheex-

FIG. 5. The equilibrium end-to-end vector distribution for a pansion is sufficiently fast, this ensemble difference in the
400-segme.nt.excluded volumg chain.. The line ;hows the .RG-force can be estimated using the leading térﬁl) given by
model prediction for smal! and mtermed_late extensions. In the _msetEq_ (43). In this expression, fluctuations terms can be evalu-
we show the_ same function for exten_smn v_alues correspondlng_ Qted fromR,=g(f) using Eqs{(11) and (12) while the gra-
r_arely occurring highly s_tre_tched conflguratlons. so that FE dewa'dient terms requiring the fixeR-elasticity lawfg=h(R) can
tions from the RGT prediction can be detected in our MC data. . 21 .

be approximated by=g~ “(R). In this way, we could estab-

The fixedR force h(R) of the necklace chain can now be lish the following main results. Quite generally, ideal chains
obtained according to E@6) by combining two curves ob- lead to similar linear elasticity laws up to the FE regime
tained by derivation of INV, functions, the first one on the Where marginal differences @(1/N), already discussed by
basis the RGT function and the second one using the ad hddory [1], are detected.
fitting curve of InW, in the FE regime. The resulting func- ~ Much stronger effects are noticed for chains in good sol-
tion h(R) is described by two portions valid in differe®  vent, with the largest deviations between ensembles when
domains, as shown in Fig. 6. The change of signxat the (average end-to-end distance lies beloRy, the un-

~0.35 shows the Speciﬁc distance where entropic forcegtretChed average value. This situation is however of little
equilibrate. experimental relevance because confinement effects should

be added to the description. For polymers in good solvent in
V. CONCLUSIONS the stretching regim&=R,, one finds a relative difference

he distinction b ed 4 fixed end in the force between ensembles which decreases from 20%
The distinction between fixed force and fixed end-to-en own to 2% as the distance grows frdRg to 3R

vector single chain ensembles was pointed out in this paper g ass_strain single chain laws are actually being probed

07 . . . . . . — by new experimental set-ups allowing micro-manipulations
e which either control the end-to-end vector or the stretching
g force. The experimental situation differs in various aspects
from the idealized ensemble description of textbooks which
is adopted in the present paper. To mention a few, consider
04| b 1 that elasticity measurements are often done dynamically at
g finite velocity, that corrections must take into account the
03 o 1 finite compliance of the microlever handling the polymer end
el o | when measuring the force or that confinement effects may
play a role. However, our analysis remains largely relevant
o1 1 and could further be modified to take some of the above
b0 ° effects into account.
o (o= A direct experimental test of the single EV chain elastic-
/ , , , . . . . ity law in the Pincus blob regime remains to be done. What
0 05 1 15 2 25 3 35 4 the present work suggests is that experimentalists might
x=R/Ry probe in this stretching regime different variants of the elas-

FIG. 6. Force-extension relationships for the necklace EV modeFICIty law depending upon the constraints introduced by spe-

in the fixed f and the fixedR ensembles. The MC results for CIfic Set-ups ranging from fixedl-to fixedR conditions.
g~ Y(R) illustrate the elasticity law in thé ensemble ©OOO).  About the much studied biological macromolecules where

For h(R), the internal force in the fixe& ensemble, the RGT pre- specific intramolecular forces resist to the stretching forces
diction is represented—) over the whole range of=R/R, while ~ applied at chain ends, ensemble effects depending on the
the finite extensibility prediction using the fitting curve used in Fig. nature of the applied constraint should be considered in the
5 (see text is shown in the domain ok>1 (——-): the actual Molecular interpretation of elasticity data.

evolution of h(R) in the simulation follows a smooth crossover ~ We note finally that the existence of specific EV single
from the RGT curve to the second one. chain elasticity laws for different single stretched chain en-
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sembles may have interesting implications for the elastic bed.T.T.’s work was done during a two year visit financed by a
havior of swollen networks where the nature of the junctiongrant from the Administration Gerale pour la Coop@tion

constraints is at the heart of network elasticity theories.
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