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Different statistical mechanical ensembles for a stretched polymer
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~Received 28 December 1998; revised manuscript received 20 April 1999!

Imposing to a single polymer chain ofN monomers either a fixed pair of forces6f acting at the chain ends
~stress ensemble! or a fixed end-to-end vectorR ~strain ensemble! does correspond to the use of different
statistical mechanical ensembles. In particular, the two elasticity laws,Rf5g( f ) and f R5h(R), whereRf is the
length of the average end-to-end vector^R& f in the stress ensemble andf R is the intensity of the average
internal force^f&R in the strain ensemble, are not equivalent. For these conjugated ensembles, the quantity
D f5 f 2h„g( f )… and more generallyDO5^O& f2^O&R whereO is an arbitrary observable, is studied system-
atically in this paper for a wide class of polymer models corresponding to chains at temperatures equal or
above the theta point. The leading termDO

(2) of an expansion ofDO in terms of the successive moments of the
end-to-end vector fluctuations in the stress ensemble can be used to analyze the scaling properties ofD f . For
the Gaussian and the freely jointed chain models,DO}1/N for large N with the particularity that, for the
elasticity law,D f strictly vanishes for the Gaussian chain at any finiteN. For chains in good solvent, the usual
resultD f}1/N at fixedf is only valid in the highly stretched chain regime~Pincus regime!. N independent large
ensemble differences of the order of 20% onD f are noticed when the chain is stretched over a distance of the
order of the unstretched chain average end-to-end distanceR0. These effects decrease to the 1% level for
Rf.3R0. Monte Carlo calculations for a chain model containing both excluded volume and finite extensibility
features illustrate the distinction between the elasticity laws in the two ensembles over all stretching regimes.
Our study suggests that the nature of the constraints used in single chain micromanipulations could be relevant
to the interpretation of experimental elasticity law data.@S1063-651X~99!15411-4#

PACS number~s!: 61.25.Hq, 05.20.Gg, 83.20.Jp
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I. INTRODUCTION

The study of the elastic behavior of a single linear po
mer is a standard application of statistical mechanical c
cepts@1–5#. In this field of renewed interest@6#, it is some-
times noticed~see@1,4,5,7#! that ensembles corresponding
a fixed end-to-end vectorR or to fixed stretching forces6f
acting at the chain ends can lead to distinct elasticity la
Long ago, Flory pointed out@1# that these two conjugate
single chain ensembles can be seen as polymer counter
of, respectively, the constant volume and constant pres
ensembles ofN-particle systems. In the latter case, aw
from phase transitions, there are correction terms ofO(N21)
for finite size effects on intensive properties like the ene
per particle, the density or the pressure. To our knowled
the nature of the equivalent correction terms for sin
stretched chain ensembles has never been discussed sy
atically ~for general models!. Elasticity laws relative to dif-
ferent single chain ensembles have been compared long
for ideal chain models. The same linear elasticity law f
lows independently of the ensemble chosen for Gaus
chains. For the freely jointed chain model~FJC!, made of N
segments of lengthb, the Langevin function relates the~im-
posed! force on chain ends to the average extension of
polymer while the inverse Langevin function gives the av
age internal force for a fixed end-to-end vectorR up to cor-
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Porto-Novo, Benin and presently at the Departimento di Fis
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rection terms which vanish asN21 in the limit of infinitely
long chains~see page 321 in@1# and chapter 6 in@4#!.

To which extent the elastic behavior of a single polym
chain with excluded volume~EV! interactions and finite ex-
tensibility ~FE! is dependent upon the nature of the exter
constraint imposed at the chain ends is the central ques
on which we focus. Although the general approach we ta
in the present paper could be exploited in other applicatio
we prefer to leave for future work elasticity features of pa
ticular biological molecules@6# or universal properties o
stretched polyelectrolytes@8#. The chain elasticity in the
globular state~below the theta point! @9# will not be consid-
ered here as our analysis is restricted to single phase sys
far from phase transition boundaries.

The correct statistical mechanical ensemble to assoc
with an experimental measurement probing single ch
properties is an issue of great interest given the actual br
through of experimental setups probing directly single ch
mechanical or thermodynamic properties like for instan
elasticity, finite extensibility or adsorption/desorption of
chain on/from a surface. In all these experiments, the end
a single chain are controlled externally, either directly
indirectly.

In the original experiment of Bustamante’s group@10#,
one end of the DNA chain is chemisorbed to a glass sup
while the other end is chemically bounded to a micron-siz
bead to which well calibrated external forces can be impo
while the average position of the bead is being recorded
fluorescence microscopy. Along the same lines, the brown
motion of a hairy polystyrene bead temporarily tethered t
glass surface by a single chain under bead-surface repu
,

7010 © 1999 The American Physical Society



on

n
ub
en
pi
su
nd

en
ac
o

a
ze
ai
uc
m

-

r
a

el

en

ui

o
n

o
re
a
f t
is

is
se

r-

be
re

ure
es
o
of
is

bles

-
icro-
udy
city
nal

he
uc-
en-
hain
in-
s-

ne-
en-

en
us

ted
bu-

ill
arlo
is a
een

ful
he

FE
the
ch-
nal
, has
stic
ed

u-
f a

b-
-

of

re-
o-

p
of
T

tch-
n

ra-
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force conditions was analyzed and the polymer ‘‘spring c
stant’’ determined@11#.

Viovy and coworkers devised another setup@12# where
the chain is rigidly maintained by a mobile piezomicroma
ipulator at one end and, at the other end, by a flexible t
through which light is deviated in a way which has be
previously calibrated against known forces within the
conewton range. The light deflection angle is then a mea
of the average internal contractile force for an imposed e
to-end vector. Atomic force microscopy~AFM! has been re-
cently developed towards single chain force measurem
probing the vertical stretching of a chain grafted on a surf
@13# or detaching a single polyelectrolyte chain adsorbed
a charged surface@14,15#.

In order to focus on the single chain elasticity law of
N-segment linear polymer within an ensemble characteri
either by a pair of fixed stretching forces applied at the ch
ends or by a fixed end-to-end vector, we need to introd
some specific notations. Let us first consider that the poly
ends are subjected to a pair of external forces2f and 1f
acting, respectively, on the beads indexed 0 andN. The re-
sulting average end-to-end vectorRf[^rN2r0& f , where r i
stands for the position vector of beadi and^•••& f represents
a fixed-f ensemble average, can be written asRf5Rf f̂
[g( f ) f̂ where f̂[f/ufu is a unit vector pointing in the direc
tion of f. The relationshipRf5g( f ) gives the elasticity law
in the f ensemble forf intensities defined, in principle, ove
the range@0,̀ #. When the same polymer is subjected to
fixed end-to-end vectorrN2r05R[RR̂ where we intro-
duced the unit vectorR̂, an average internal forcefR5 f RR̂
[h(R)R̂ develops within the polymer. These forces, nam
1fR and2fR , which act respectively on beads 0 andN, tend
usually to contract the chain@h(R).0# but they sometimes
act in the opposite direction, as when EV forces between
beads give rise to a repulsion at short distance@h(R),0#.
The relationshipf R5h(R) is the elasticity law in the fixed-R
ensemble which, in principle, covers values ofR in the range
@0,̀ #. We will consider the differenceD f5 f 2h„g( f )… be-
tween these force intensities as a measure of the non eq
lence of the elasticity laws in both ensembles.

The fact that we focus on this particular manifestation
the distinction between both conjugated ensembles does
imply that it is the only one. Other single chain properties
a stretched polymer like its gyration tensor, the NMR
sidual dipolar interaction or the chain structure factor in sc
tering experiments should also depend upon the nature o
applied constraint. Even if these applications are not d
cussed in the present paper, we give the theoretical bas
establish the connection between the averages of any ob
able calculated in the stress or in the strain ensembles.

The nature of the difference between the fixed-f and
fixed-R single polymer conformational ensembles is fo
mally similar for any particularR ~or f ) value but, as well
qualitatively and quantitatively, the effect turns out to
radically different for the small and the large extension
gimes defined, respectively, byR/R0!1 and R/R0@1,
whereR0 is the average~in the mean square sense! of the
unstretched chain end-to-end vector.

In the low-f regime of the fixed-f ensemble, the EV
chains are usual~weakly perturbed! three-dimensional~3D!
-
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self-avoiding walks while in the low-R limit of the fixed-R
ensemble, all conformations are close to a cyclic struct
and EV chain ends are mutually repelling due to forc
which are largely of entropic origin: the members of the tw
ensembles are thus forming two quite different families
conformations. It must be realized here that our attitude
quite formal as the relevance of the stress or strain ensem
considered in this paper~and in standard textbooks@1,5#! is
of little experimental relevance in theR/R0!1 regime. Real
single chain elasticity experiments involving micro
manipulations on chain ends use needles, beads, or m
tubes on which chain ends are grafted: a more realistic st
of the effects of the constraints on the single chain elasti
in the weak stretching regime should then include additio
confinement effects.

Considering now the strong stretching regime of t
fixed-f ensemble, it turns out that the end-to-end vector fl
tuates only slightly around the mean so that the two
sembles give almost the same averages for any single c
structural property. A systematic study of the ensemble
fluence on the elasticity law will however allow us to inve
tigate the interesting crossover regimeR/R0'1 which
should be experimentally relevant as, in this regime, confi
ment effects are probably negligible with respect to the
semble effects discussed in this paper. The differenceD f in
the elasticity laws will be discussed theoretically and th
applied to different standard chain models in continuo
space. We will consider Gaussian chains, freely join
chains, and EV chains according to the end-to-end distri
tion obtained from renormalization group theory~RGT!. A
last model containing both EV and FE characteristics w
also be discussed on the basis of extensive Monte-C
simulations. The adopted hard sphere necklace model
semiflexible chain with hard sphere repulsion terms betw
monomers. Both fixed-f and fixed-R elasticity laws can be
extracted from such simulations which in addition, are use
to test the domain of validity of RGT and the nature of t
crossover behavior between the scaling regime and the
region, the latter region being actually the main focus of
new experiments on single molecule stretching. The te
nique we used in our simulations, namely the configuratio
biased Monte Carlo method adapted to stretched chains
also been implemented to study the elongation of a reali
chain model of polyethylene but this topic will be discuss
elsewhere@16#.

It should be recalled at this point that Monte Carlo calc
lations have been successfully applied within the context o
single stretched EV chain, starting with the work of We
man, Lebowitz, and Kalos@17# which demonstrated the ex
istence of a Pincus blob regime in the intermediate regime
the elasticity law. The behaviorRf} f (1/n)21, wheren'0.6 is
the Flory scaling exponent for good solvent conditions,
mains today a property which was originally predicted the
retically @18#, subsequently checked by simulations@17#, but
not yet directly verified experimentally. Much later, Wittko
et al. @19# performed a more extensive Monte Carlo study
the same single EV chain elasticity law, showing that RG
correctly predicts the cross-over between the linear stre
ing regime~at weak forces! and the Pincus blob regime. I
1995, Cifra and Bleha@20# studied the effect of varying the
solvent quality on the elasticity law, in particular the sepa
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tion between enthalpic and entropic contributions to
stretching force. Recently, two of us@21# reported Monte
Carlo results on the scattering function of a stretched ch
showing the signature of Pincus blobs on the structure fac
It is interesting to note that, with the exception of Cifra a
Bleha’s work which follows a fixed-R statistical mechanica
formulation, all MC works mentioned above are formulat
in the fixed-f ensemble. A different stretched chain ensem
where only one component of the end-to-end vector is c
strained has been used in a recent series of MC stu
@22,23# aimed at studying the coil-globule phase transiti
under stretching. As transverse end-to-end vector fluc
tions are sampled while they are frozen in the fix
R-ensemble we consider~where the vectorR is fully con-
strained!, the elasticity law in this unusual ensemble shou
be intermediate between the two cases discussed in
present paper.

Our paper is organized as follows. In the next section,
start by defining quite generally the different single cha
stretching domains to which we will refer throughout t
paper. In Sec. III, we remind the statistical mechanical f
malism required to derive the elasticity law in both the fixe
f and the fixed-R ensembles which enables us to prope
define the central quantityD f mentioned earlier. We then
evaluate exactly this quantity for various standard ch
models relative to chains at the theta point or in good s
vent. We cover here ideal chains~the Gaussian and the FJ
cases! and EV chains using the RGT end-to-end vector d
tribution of unstretched chains. In Sec. IV, we establish t
formal expansions of the average of an arbitrary observa
^O& f around ^O&R computed in a fixed-R conjugated en-
semble. We discuss various convergence aspects of t
expansions for the different chain models. For the particu
case ofD f whereO is simply chosen to be the internal forc
acting on the chain ends, we find a leading term in the
pansion, namely the second order expressionD f

(2) , which
turns out to be a good approximation ofD f in the R/R0.1
stretching domain. In that case, scaling properties ofD f can
be estimated from those ofD f

(2) . In the last part of this sec
tion, Monte Carlo calculations relative to the hard-sph
necklace model~which combines FE and EV characteristic!
are presented. Conclusions and perspectives are gather
the final Sec. V.

II. SINGLE CHAIN STRETCHING DOMAINS

Consider a linear polymer ofN Kuhn segments~we sup-
poseN@1) each of sizeb undergoing Brownian motion in a
solution at temperatureT. The average end to end distance
the chain isR0'bNn wheren is the scaling exponent equa
to n50.5 or n'0.6 for u and good solvent conditions, re
spectively. When this polymer is subjected to stretch
forces6f at its ends, the average end-to-end distance sh
three distinct regimes which can be predicted by scaling
guments@18,24,17#.

A. Linear regime

At small forces@ f , f * [(kBT/R0)#, the relative exten-
sion increases linearly with the global reduced forcehg
5( f R0 /kBT)
e
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R0
5

1

3
hg . ~1!

The effective spring constantk, which relates the exten
sion Rf to the stretching forcef , f 5kRf , is thus k
53kBT/R0

2.

B. Pincus blob regime

For forces in the rangef * , f , f ** [(kBT/b), i.e., when
f lies in the domain wherehg.1 and the local reduced forc
h l[( f b/kBT),1, the universal scaling corresponds to t
so-called Pincus blob behavior@18,24#

Rf

R0
5Ahg

(1/n21) , ~2!

where A is a constant. When excluded volume forces a
absent, one hasn50.5 andA51/3 so that Eq.~2! extends the
validity of the small force linear law of Eq.~1! up to f ** .
For EV chains,A'0.46 @17,21#.

C. Finite extensibility regime

Finally, when the force is such thatf > f ** , the finite
extensibility ~FE! regime is entered and a model speci
behavior follows. This is the region which is most studi
experimentally@6,13#.

D. About the N dependence ofRf at fixed f

For later purposes, it is useful to discuss at this stage
N dependence of the average end-to-end vector at fixedf in
the different domains. In the linear regime, theN dependence
is related to the spring constant varying asN22n. For both
the Pincus blob regime and the finite extensibility regim
~sometimes collectively denoted as the strong stretching
gime in the following!, the average extension scales likeN at
fixed f, a behavior expected when the extension of
stretched polymer overcomes the size of the unstretc
chain @24#.

E. Typical force crossover values in experimental setups

Crossover valuesf * and f ** for some micromanipula-
tions on stretched macromolecules at 300 K reported in
introduction are easily estimated on the basis of publis
values of the contour lengthLc of individual chains and of
the Kuhn segment lengthb which combine to giveR0

2

5Lcb. For a DNA chain of lengthLc'30 mm in physiologi-
cal conditions for whichb50.1 mm @10#, one finds f *
'0.003 pN andf ** '0.05 pN and we note that, in Re
@10#, data points are reported forf > f ** . The AFM study of
individual dextran filaments leads tof * 50.2 pN and f **
57 pN usingb50.6 nm andLc'1 mm @13#. Exploring the
power law regime would be rather difficult asf should be of
the order of a few pN while natural fluctuations seem to be
the order of 20 pN. Improved precision could however
obtained by averaging over many successive stress or s
cycles over the range of end-to-end vector lengths of inte
@13#.
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III. FIXED- f AND FIXED- R ENSEMBLES FOR A SINGLE
POLYMER CHAIN

A. A reminder of textbook statistical mechanics

We now establish the theoretical context more explic
by starting from the equilibrium distribution function of th
chain end-to-end vectorR5rN2r0 which in the absence o
external forces is defined as

W0~R,N!5

E dr Nd~rN2r02R!exp@2bU~r N!#

E dr N exp@2bU~r N!#

[
ZR

Z
,

~3!

whereb5(1/kBT) is the reciprocal temperature,r i is the i th
bead position,U(r N) is the effective potential energy wit
(r N) representing the set of coordinates of the chain, andd is
the Diracd function. The potential energy consists of a su
of bond length constraining potential terms~insuring the
connectivity! and possibly EV pair interactions. The numer
tor ZR and denominatorZ in the above equation are sing
chain partition functions for a constrained and unconstrai
end-to-end vector, respectively. As usual, we associate toZR
the Helmholtz free energy

A~R,N!52b21 ln ZR52b21 ln W0~R,N!1C~N!,
~4!

where we have indicated theN and R dependencies. Note
also that for any Cartesian componenta5x,y,z, the first
moment ofRa with respect toW0 vanishes due to spac
isotropy while the second moment gives1

3 R0
2.

In the fixed-R ensemble, the average of an observa
O(r N) is given by

^O&R5ZR
21E dr NO~r N!d~rN2r02R!exp@2bU~r N!#.

~5!

Under the end-to-end vector constraint, the choiceO5
2(]U/]r0) yields the average internal forcefR acting on the
end-bead 0 which lies alongR̂5(R/R) by symmetry. To see
this explicitly, let us substituteO in Eq. ~5! and let us use the
identity

2
]U

]r0
exp~2bU !5b21

]@exp~2bU !#

]r0
.

Integration by parts transfers the application of the deriva
to thed function. Given the nature of the argument of thed
function appearing in Eq.~5!, the gradient operation with
respect tor0 can be substituted with a gradient with respe
to R so that the expression turns out to be finally equival
to the gradient of lnW0 with respect toR @see Eq.~3!#. Keep-
ing consistency with notations used in the Introduction,
thus have
-

d

e

e

t
t

e

K 2
]U

]r0
L

R

5 K 1
]U

]rN
L

R

52
1

b

]@ lnW0~R,N!#

]R

5
]A~R,N!

]R
5 f RR̂[h~R!R̂. ~6!

The equationf R5h(R) defines the elasticity law in the
fixed R ensemble.

In the fixed-f ensemble, the end-to-end vector fluctua
around a nonzero vector^R& f parallel tof. The relevant par-
tition function becomes@1#

Zf~ f,N!5E dR ZR exp~bf•R!

5ZE dR W0~R,N!exp~bf•R!. ~7!

The f ensemble average of a microscopic variableO(rN)
will be written as

^O& f5Zf
21E dr N O~rN!exp$2b@U~rN!2~rN2r0!•f#%.

~8!

It follows from the above equations that the average a
fluctuations of the end-to-end vector are given as partial
rivatives ofZf according to

^R& f5
1

b

]

]f
ln Zf5Rf f̂[g~ f ! f̂, ~9!

^dRdR& f5
1

b2

]

]f

]

]f
ln Zf5

1

b S ]g~ f !

] f
f̂ f̂1

g~ f !

f
~12 f̂ f̂! D ,

~10!

wheredR5(R2Rf f̂).
The first equation defines the elasticity law,Rf5g( f ), in

the f ensemble and states that the average elongation
direction transverse tof̂ vanishes by symmetry. Fluctuation
are still given in terms ofg( f ) and its first derivative. If we
denote, respectively, asdRi and dR' the longitudinal and
transverse components of fluctuations in the fixed-f en-
semble, we obtain from Eq.~10!

^dRi
2& f5

1

b

]g~ f !

] f
, ~11!

^dR'
2 & f5

1

b

g~ f !

f
. ~12!

The nonequivalence between fixed-f and fixed-R en-
sembles shows up in the fact that the relationshipsf R
5h(R) @Eq. ~6!# and Rf5g( f ) @Eq. ~9!# are not inverse
functions of one another. The functionD f introduced earlier
to measure this ensemble difference can thus be express
D f5 f 2h„g( f )…. Alternatively, the same ensemble depe
dence of the elasticity law can also be formulated asDR
5R2g„h(R)….
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B. Elasticity laws in the two stretched chain ensembles
for specific models

In this section, we use the above theoretical framework
estimate the importance of the ensemble effects on the si
polymer elasticity law for standard chain models. We w
treat the universal models for ideal chains and for chain
good solvent and finally look at the freely jointed chain
appreciate the ensemble effects when finite extensibility
incorporated in the model.

1. Long chains at or above theu point

If we restrict ourselves tou and good solvent conditions
the equilibrium end-to-end vector distributionW0(R,N)
evolves, as the number of monomersN increases, to an ex
pressionW0(R,N)}(C/R0

3)ŵ(x) whereŵ(x) is a universal
function of the reduced distancex5(R/R0) and where the
explicit N dependence is left into the measure only. We ha
@26#

W0~R,N!dR →
N→`

Cxg exp~2Dxd!dx, ~13!

whereC is a normalization constant andx the reduced end
to-end vector. The RGT parameters for good solvent cha
areD51.2063, d5(12n)2152.4272, andg50.275 while,
for Gaussian chains, we simply haveD5 3

2 ,d52.0, andg
50.0.

For later purposes, it is important to note that the r
evance of this distribution for finite chains idealized asN
Kuhn segments of lengthb, is restricted to the rangeb!R
!Nb @24#. Within the fixed-R ensemble, the force functio
f R5h(R) can be obtained by applying Eq.~6! to the particu-
lar expression~13!. Using reduced quantities, one gets t
general result

bR0f R[hg52
g

x
1

D

~12n!
xn/(12n) ~14!

which reduces to the linear lawbR0f R53x in the Gaussian
case.

Alternatively, we get the elasticity law and the end-to-e
vector fluctuations relative to the fixed-f ensemble by apply-
ing to the particular end-to-end distribution function~13! the
series of Eqs.~7!, ~9!, and ~10!. For Gaussian chains, th
linear lawRf5g( f )5R0(hg/3), turns out to be identical to
the elasticity law@Eq. ~14!# in the fixed-R ensemble. The
end-to-end vector fluctuations in the fixed-f ensemble, which
can be obtained directly fromg( f ) on the basis Eqs.~11! and
~12!, are independent off and thus identical to the un
stretched case.

For EV chains, the end-to-end vector moments in thf
ensemble, namelyRf , ^dRi

2& f , and ^dR'
2 & f , can be esti-

mated numerically on the basis of Eqs.~9!, ~11!, and ~12!
~see also Ref.@19#!. For completeness, we give the expre
sions to be evaluated numerically in terms of the global
duced forcehg ,

Rf

R0
[x5

1

hg
F S hgc2

s1
D21G , ~15!
o
le

l
in

is

e

s

-

-
-

^dRi
2& f

R0
2 5

s3

s1
2S c2

s1
D 2

1
1

hg
2 , ~16!

^dR'
2 & f

R0
2 5

1

hg
2 F S hgc2

s1
D21G , ~17!

where we have defined

si~hg!5E
0

`

dy sinh~hgy!yi 1g exp@2Dy1/12n#, ~18!

ci~hg!5E
0

`

dy cosh~hgy!yi 1g exp@2Dy1/12n#. ~19!

For chains in good solvent satisfying the universal dis
bution function Eq.~13!, the elasticity laws in fixed-f and
fixed-R ensembles, i.e., Eqs.~15! and ~14!, respectively, are
found to be quite different. This is shown in Fig. 1 where t
universal behavior ofD f / f is plotted against the reduce
distancex. The difference is small~below 2%) for chains
stretched over distances at least three times their typical
stretched chain value (R.3R0), it amounts to about 20% fo
R'R0 and it diverges as the distance decreases to zero.
elastic behavior of chains in good solvent thus presents qu
titative differences depending upon the nature of the stre
ing constraint. These effects culminate at short end-to-
distances (R,R0) where both distributions of conformation
are intrinsically different as we mentioned in the Introdu
tion. This is however a regime of little experimental re
evance as confinement effects should be taken into acco
The effects observed for EV chains in theR regimeR0,R
,3R0, which corresponds to the crossover regime betw
the linear and the Pincus regime discussed in Sec. II, sh
be observed for finite chains as long as finite extensibi
does not interfere, a feature which is ensured as soon
3R0!Nb, i.e., whenN@35/2. Finite extensibility effects will
be specifically considered in the next section for the F
model.

FIG. 1. D f / f is shown as a universal function of the reduc
extensionx5R/R0 for the RGT model. The lines (—) represent the
direct differences while the dashed lines ( – – – ) show the pre
tions of D f

(2) according to Eq.~43!.
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Let us finally remark that the ideal chain resultD f50,
which is valid for arbitraryN, is somewhat surprising whe
one considers that, at least at short end-to-end distances
distribution of conformations is very different in the tw
ensembles. We will see the origin of this absence of c
straint effects on the elasticity properties of Gaussian ch
in the next section.

2. The FJC model: Finite extensibility effects

The FJC model is the prototype of an ideal chain w
limited extensibility. This model ofN freely jointed rigid
bonds of lengthb evolves towards the Gaussian model asN
gets large, as long as the end-to-end distanceR remains
much smaller than the contour length of the chainLc5Nb
@1,4#.

To analyze the FJC elasticity law in the fixed-R ensemble,
we exploit the known expression ofW0(R,N), namely an
integral over reciprocal space to be evaluated numeric
@1#. The average force intensityh(R) estimated using Eq
~6!, requires an additional integral over reciprocal space to
calculated. We have

W0~R,N!5
1

2p2R
s18 , ~20!

h~R!5
1

R
2

c28

s18
, ~21!

where we have introduced more general compact notat
~which will be useful for later purposes!

si85E
0

`

dq qi sin~qR!Fsin~qb!

qb GN

, ~22!

ci85E
0

`

dq qi cos~qR!Fsin~qb!

qb GN

. ~23!

Alternatively, the partition function for the FJC at fixedf
can be evaluated analytically by straightforward calculatio
@4#. The average end-to-end vector and its fluctuations
fixed-f @see Eqs.~11! and ~12!# are easily obtained. On
finds the classical result (Rf /Lc)[y5L(h l) where h l
5(b f /kBT) is the local reduced force,y is the relative ex-
tension, andL(u)[coth(u)21/u is the well-known Lange-
vin function. Use of Eqs.~11! and ~12! leads to fluctuation
expressions ^dRi

2& f5Nb2@122L(h l)/h l2L 2(h l)# and
^dR'

2 & f5Nb2L(h l)/h l .
In Fig. 2, we show the behavior ofD f / f for various

lengths according to the FJC model (N516, N532, N
564, andN5128) in terms of the relative extensiony cov-
ering a force rangeh l<4.0. The results clearly show that, a
predicted by Flory@1#, the ensemble effects on the FJC ela
ticity law are dominated by a 1/N term. We note thatD f / f
decreases below the 1% level for chains withN.100 but
amounts 10% for theN516 case aty50.75. The Gaussian
chain limit for the elasticity law ensemble differenc
~namelyD f / f 50) is indeed recovered from the FJC resu
for y!1, whenN goes to infinity.
the

-
s
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e
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s
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-

,

IV. THE CONNECTION FORMULAS BETWEEN FIXED- f
AND FIXED- R ENSEMBLES

In the previous section, we have shown that single ch
elasticity laws are in general different in conjugated stretch
chain ensembles. While the effect is accidentally zero
Gaussian chains, the relative differenceD f / f is below the
percent level only when EV chains, independently of th
length, are stretched over a distance which is larger t
three times their equilibrium end-to-end distance. Finally,
FJC chains,D f / f '1/N over a wide range of local reduce
forcesh l,4, providedN is larger than'15.

In the present section, we express the difference betw
the ensemble averages in terms of a series expansion wit
aim of clarifying to which extend the properties ofD f we just
summarized, can be understood in terms of second o
fluctuations ofR at fixed f. In order to enlarge the potentia
applications of our theoretical analysis, we will study t
single stretched chain ensemble effects on the averages
arbitrary structural property denoted by an observa
O(rN). At the end of the section, we will return to the ela
ticity case on which we focus in this paper.

A. General formalism

We want to compare the averages of an arbitrary obs
ableO in the strain~fixed-R vector! and in the stress~fixed-
f vector! ensembles. These ensembles imply vector c
straints along the same direction~say along thez axis!,
namely f5(0,0,f ) and R5Rf5(0,0,Rf) where Rf5g( f )
@Eq. ~9!# or R5(0,0,R) and f5fR5(0,0,f R) where f R
5h(R) @Eq. ~6!#.

On the basis of expressions~3!, ~4!, ~5!, ~7!, and~8!, we
can write the basic relationship between ensembles avera
namely

^O& f5Zf
21E dR ZR^O&R exp~bR•f!

5Zf
21E dR^O&R exp$2b@A~R,N!2R•f#%. ~24!

FIG. 2. D f / f is shown as a function of the reduced extensi
y5R/Lc for the FJC model withN516, 32, 64, and 128. The line
(—) represent the exact differences while the dashed lines ( –
show the predictions ofD f

(2) according to Eq.~43!. The dotted-
dashed lines are polynomial fits~see text!.
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A systematic and formally exact expansion of this eq
tion can be obtained directly by replacing the observa
averagê O&R on the r.h.s. of Eq.~24! by its Taylor expan-
sion aroundR5Rf and by performing all integrations@25#.
This expansion that we will denote byE1 leads to an infinite
series in terms of averages of end-to-end vector fluctuat
of all orders in the fixed-f ensemble: note that the first ord
term is zero but has been kept here to indicate the struc
of the infinite series,

^O& f5~^O&R!R5Rf f̂
1S ]

]R
^O&RD

R5Rf f̂

^dR& f

1
1

2 S ]

]R

]

]R
^O&RD

R5Rf f̂

:^dRdR& f1•••. ~25!

The expansion in Eq.~25! is exact and directly compare
ensemble averages in the fixed-f and fixed-R conjugated en-
sembles for force intensityf and end-to-end vector length s
to R5g( f ), respectively. However, its convergence, is dif
cult to assess in general.

Another series expansion, calledE2, can be obtained by
applying the steepest descent technique@27#. In order to re-
place the fixed-f distribution by a multivariate Gaussian di
tribution, one has to develop, to second order inR, the ex-
ponentb@A2R•f# around its minimumRmf̂ . The location of
the free energy minimum is the solution of the implicit equ
tion

f5
]A~R,N!

]R
, ~26!

which, by using Eqs.~4! and ~6!, yields Rm5h21( f ). The
covariance matrixC(Rm) is given by

C21~Rm!5b@“R“RA~R,N!#R5Rmf̂

5bF ~12R̂R̂!
h~R!

R
1R̂R̂S ]h

]RD G
R5Rmf̂

. ~27!

Subsequent Taylor expansion of^O&R aroundRm( f ) up to
second order provides the leading term of the series ex
sion in terms ofRm andC(Rm)

^O& f5~^O&R!R5Rmf̂1
1

2 S ]

]R

]

]R
^O&RD

R5Rmf̂

:C~Rm!1•••.

~28!

The developmentE2 again relates averages of an obse
able in conjugated ensembles. However whileE1 @Eq. ~25!#
relates ensembles with identical end-to-end vector
slightly different forces, the steepest descent expansionE2
treats ensembles with the same forcef but differentR values,
namelyRf for the fixed-f ensemble andRm for the fixed-R
ensemble.

ExpansionE2 is a priori more transparent when discus
ing the convergence of the series. For that purpose, Eq.~24!
can be rewritten in terms of a new intensive variabler
5R/N,
-
e

ns

re

-

n-

-

d

^O& f5
N

Zf
E dr ^O&Nr exp~2N@ba~r ,N!2br•f# !, ~29!

wherea(r ,N) is the free energy per segment for a chain
fixed end-to-end vectorR5Nr . This expression resemble
the fixed volume/fixed pressure ensemble transformation
lation for aN-particle system on the basis of which finite si
effects are derived in statistical mechanics@25#. Equation
~29! suggests that theN dependency of the series based
the steepest descent expansion should be examined w
keeping^r & constant. The underlying motivation is that on
expects that the differences between ensembles should
ish for N infinite.

While series expansionsE1 @Eq. ~25!# is formally exact,
getting more than a leading term inE2 @Eq. ~28!# is not a
trivial case. These difficulties arise when considering th
order correction terms in the free energy expansion requ
by the steepest descent technique or when finite chain
corrections ina(r ,N) need to be taken into account. Fort
nately, in usual cases whereN is sufficiently large for the
single bond free energya(r ,N) to become intensive~at fixed
^r &), and as long as the average^O&R is at least quadratic in
R, the leading term of order 1/N given by Eq.~29! will fairly
well represent the ensemble difference. However, if
choose to study the ensemble effects on the elasticity
with the choiceO5rN2r0 on the basis of Eq.~28!, the lead-
ing term vanishes for that particular~linear! observable and
the next term in the expansion will require the considerat
of higher order terms. We have not attempted to follow t
route any further in the present work.

Because of the above difficulties when dealing with e
pansionE2, we will exploit mainly expansionE1 when
dealing with the difference between fixed-f and fixed-R av-
erages of an arbitrary observable relative to the stretc
chain system. We will analyze the structure of the sin
bond free energy for each of these models. More particula
we will investigate the convergence of the expansionE1
@Eq. ~25!# whenN and possiblyf are varied.

B. Link between ensembles for specific chain models

Let us start by adopting forW0 and its associated fre
energy expression the universal model function for th
point and good solvent polymers defined by the distribut
~13!. We have

bA~R,N!5DS R

bNnD 1/(12n)

2g lnS R

bNnD 1K, ~30!

whereK is a constant. Note that by adopting this descripti
we neglect finite extensibility effects, i.e., we are limited
R!Nb.

The free energy per bond derived form Eq.~30! is

ba~r ,N!5DS r

bD 1/(12n)

2
g

N
lnS r

bD1
K

N
~31!

which becomes intensive whenN→`.
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1. Gaussian chain universal model

In this case,g50, D5 3
2 , and n5 1

2 . From Eq.~31! we
observe that the free energy per bond is strictly intensive
is quadratic inr. The probability distribution in Eq.~29! is
Gaussian so that the steepest descent technique can be
formed easily to yield expansionE2 as an explicit infinite
series expansion. It is easy to show that expansionsE1 and
E2 are identical in this particular case where the unique e
ticity law in both ensembles guaranteesRf5Rm . Following
expansionE1, one has

^O& f5^O&Rf
1

1

2 S ]

]r

]

]r
^O&RD

R5Nr

:^dr dr & f1••• ~32!

5^O&Rf
1

1

N

b2

6 F S ]

]r
•

]

]r
^O&RD

R5Nr
G1•••, ~33!

where ^dr dr & f and higher order terms are moments of
three-dimensional Gaussian distribution giving terms in
cending integer powers ofN21.

For regular^O&R functions and for moderately largeN,
the above series should always converge to a finite va
Note that in the particular case where^O&R is linear inr , like
it is precisely the case for the internal forceh(R) @see Eq.
~14!#, ^O& f is strictly equal to^O&Rf

for any finite N and
arbitrary f because all terms of the series vanish. This
consistent with the equivalence between elasticity laws r
tive to both ensembles which was noticed for Gauss
chains with finite number of beads in the previous sectio

2. EV chain universal model

For EV chains, the single bond free energy@Eq. ~31!#
leads to a minimum of (ba(r ,N)2br•f), as required in the
E2 expansion, which is given by

br f 2
D

~12n! S r

bD 1/(12n)

52
g

N
~34!

whose solutionr m is N dependent. When the r.h.s. of E
~34! can be neglected, i.e., whenb f r @(0.275/N), one finds

r m5S ~12n!

D D (12n)/n

~b f !(12n)/nb1/n

which gives an extensionRm following the Pincus scaling
expressionRm'g( f ) given by Eq. ~2!. Accordingly, the
above condition can be interpreted in terms of the concep
tensile blobs asR@0.275r blob which indicates that, for a
fixed f value and thus for a fixed Pincus~tensile! blob size
r blob5(b f )21, the number of monomers should be lar
enough for the polymer extension to be several times
blob size@24#. Physically, this means that the chain must
in the strong stretching regime (hg@1).

The central role played byhg in the stretched chain in
good solvent calls for some additional remarks. The He
holtz free energyA(R,N) of unstretched EV chains, name
Eq. ~30! which follows from Eqs.~3! and ~13!, can be ex-
pressed as a function of a single variablex5R/R0

bA~x!5Dx1/(12n)2g ln~x!1K, ~35!
d

per-

s-

-

e.

s
a-
n

of

e

-

where theN dependence is no longer explicit.
In terms of stretched chain ensembles, the variable co

gated to the reduced end-to-end vectorx is h̄g as bf•R
5h̄g•x. In these variables the ensemble tranformation re
tion become

^O&hg
5

1

Zhg

E dx^O&x exp~2@bA~x!2h̄g•x# ! ~36!

andZhg
5Zf .

Equation ~36! strictly deals with infinite chains but, a
already noticed, this universal behavior applies to fin
chains in theR domain where FE effects are not probed. W
thus stress here that the conjugated ensembles for EV ch
are never equivalent at finitehg . It must be emphasized tha
while ensemble effects tend to disappear asN grows at fixed
forcef ~i.e., increasinghg!, the same effects are unaffected
the combined limitN→`, f→0,hg} f Nn constant. The sec
ond order expansions of^O&hg

similar to Eqs.~25! and~28!

to transform ensemble averages between conjugated
sembles remain relevant, but the convergence of the ex
sions is clearly controlled byhg . For largehg , which cor-
responds to a highly stretched state which can result fro
large polymer sizeN at moderatef, a large forcef at moder-
ate polymer sizeN or both largef and N, the series should
quickly converge. When values ofhg decrease to a value
close to unity, the convergence must be controlled emp
cally and more terms in the expansions may be necessa
get DO with accuracy. We will illustrate this point with the
elasticity law in the next section.

3. Some comments about the FJC model

The link between stretched chain ensemble averages^O& f
and ^O&R for the FJC model furnishes additional insigh
about the FE effects. We first note that the stretched ch
free energyA(R,N), its first derivative respect toR which is
the forceh(R), and, if required, its higher derivatives can b
calculated numerically using Eq.~21! and its derivatives eas
ily expressed in terms of higher order coefficientss8 andc8
defined in Eq.~23!. Using the above quantities calculated f
N up to 128 over the range 0<h l<4.00 corresponding tor
<0.75, one expects that ther dependent part of the fre
energy per monomer presents a size dependence term d
nated by a 1/N and then a 1/N2 term. Moreover, as for the
FJC model~@1,4#!, D f5 f 2h„g( f )… at arbitraryf vanishes in
the infiniteN limit, one should have

ba5
1

2 S 31
a8

N
1

a9

N2D S r

bD 2

1
1

4 S 9

5
1

b8

N
1

b9

N2D S r

bD 4

1•••

~37!

bh~R!b5S 31
a8

N
1

a9

N2D r

b
1S 9

5
1

b8

N
1

b9

N2D S r

bD 3

1•••,

~38!

where a8, a9, b8, and b9 are numerical coefficients. We
exploited our data onba and its derivatives for variousN to
determine empirically these coefficients by polynomial fi
and we found a8523.00, b8524.50, a951.2684, b9
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51.68. In Fig. 2, we see that expression~37! reproduces
indeed theN and r dependence ofD f for r<0.4. The link
between ensemble averages for an arbitrary observable^O&
relative to the FJC model is given by Eqs.~29! where the
free energy term is obtained from Eq.~37!. The maximum of
probability is given by the solution of Eq.~38! which, at low
N, gives aN-dependentr m value. AsN increases, Eq.~38!
must evolve towardsb f b5L 21(r /b). The connection be-
tween conjugated ensembles averages will again be d
nated by a 1/N term.

C. Second order approximation applied to the elasticity case

The series expansion Eq.~25! defines a second order ter
which should dominateDO provided that we are in the con
vergence regime of the particular chain model conside
We will again focus on the elasticity law and thus select
variableO[2(]U/]z0) wherez0 is thez component of the
end bead positionr0. In the fixed-f ensemble, mechanica
equilibrium imposeŝ2(]U/]z0)& f5 f while, in the fixed-R
ensemble, Eq.~6! gives

K 2
]U

]z0
L

R

5h~R!
Rz

R

whereRz is the z component of the end-to-end vector. Th
quantityD f introduced earlier in this paper as a measure
the distinction between the elasticity laws in both ensemb
can indeed be expressed as

D f[ K 2
]U

]z0
L

f

2 K 2
]U

]z0
L

R

5 f 2S h~R!
Rz

R D
R5Rf

5 f 2h~Rf !. ~39!

Adapting Eq.~25! to our case provides us with the fo
lowing second order approximation forD f ,

D f
(2)5 1

2 ^dR dR& f :F ]

]R

]

]R S h~R!
Rz

R D G
R5Rf

[
1

2
^dR dR& f :T, ~40!

where the tensorT is introduced for convenience. Using d
agonal properties of the fluctuation tensor and according
Eqs.~10!, ~11!, and~12!, Eq. ~40! can be transformed, usin
Eq. ~9!, as
i-

d.
e

f
s,

to

D f
(2)5 1

2 @^dRi
2& fTzz1^dR'

2 & f~Txx1Tyy!# ~41!

5
1

2b F ]g

] f S ]2h

]R2D
R5g( f )

1
g~ f !

f F 2

R S ]h

]R
2

h

RD G
R5g( f )

G
~42!

5
1

2b F ]g

] f S ]2h

]R2D
R5g( f )

1
2

f S ]h

]R
2

h

RD
R5g( f )

G . ~43!

Using Eqs.~6!, ~7!, and~9!, the expressionsD f andD f
(2)

can be evaluated for any model for whichW0(R,N) is
known. In Figs. 1 and 2, we show, respectively,D f

(2) for the
universal EV case and for the FJC model. For the EV mod
the approximation is quite good for the rangeR>R0 but for
R,R0, higher order terms in the expansion should be tak
into account. For the FJC case, the second order estim
improves quickly asN gets larger.

Quite generally, at fixedf in the highly stretched chain
regime, we know that bothA(R,N) andRf become linear in
the chain lengthN @24#. In that regime,D f can then be shown
to vanish like 1/N for large N chains, independently of the
chain model. This can be proved using the approximat
D f

(2)'D f valid in that regime. One takesRf5Nz( f ) and
f R5h(R)5w(R/N) where z( f ) and w(r ) ~with r 5R/N)
are close to being inverse functions of one another. Sub
tuting these formal expressions inD f

(2) @Eq. ~43!# gives

D f
(2)5

1

N F ]z

] f S ]2w

]r 2 D
r 5z( f )

1
2

f S ]w

]r
2

w

r D
r 5z( f )

G , ~44!

thus indicating a 1/N dependence at fixed-f ~and thus at fixed
r 5R/N) in any strongly stretched regime such as the Pin
blob regime for EV chains or such as any type of FE regim

D. Monte Carlo calculations for the stretched hard-sphere
necklace model

The semirigid necklace model we now consider cons
in N11 hard spheres linearly connected byN rigid bonds of
lengthb. This 3D continuous space model is convenient a
combines most aspects of real polymers in good solvent c
ditions, namely EV and FE effects. We report in the follow
ing a Monte Carlo study of a stretched polymer based on
model with a hard sphere diameters50.65b which garan-
tees that EV interactions are operative at all length scale
the absence of external forces. The particular caseN5400
with unperturbed sizeR0536.81b @21# was selected for our
purposes as such a chain size is sufficiently long to disp
all stretching regimes of the elasticity law.

The adopted MC method combines configurational b
sampling and reptation moves@28#. A stretched state of the
polymer @i.e., under fixed external force6f5(0,0,6 f )# is
studied by adding to the potential energy term, a stretch
work

T52f•R, ~45!

which is a function of the instantaneous value of the end
end vectorR. Running the program for variousf values gives
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the evolution of the average end-to-end vectorRf , i.e., the
g( f ) data shown in Fig. 3, and its fluctuations shown
Fig. 4.

In Fig. 3, the simulation points are compared to the R
model prediction@Eq. ~15!# for a polymer with unstretched
sizeR0 adjusted to the actual value of the 400 bonds polym
treated by MC, and also to the 400 bonds FJC predictio
model to which our MC necklace model reduces when
hard-sphere interactions are suppressed. We observe th
MC results are quite well represented by the RGT curve
low forces@19#. Beyondh l'0.3, the data exhibit a smoot
crossover to a FJC behavior.

Figure 4 shows the fluctuations of the end-to-end vec
components of the same 400 segments EV chain treate
MC and the corresponding RGT predictions for longitudin
and transversal fluctuations. In terms of reduced quanti
the theoretical expressions given by Eqs.~16! and ~17!, are

FIG. 3. Elasticity law in the constant stress ensemble for
FJC model ( – – – ), the RGT prediction~—!, and our fixed-f MC
results (ssss), with N5400.
e

s
e
of
rib
r
a
e
the
t

r
by
l
s,

seen to match the MC data up toh l'0.3. At higher forces,
FE effects lead to a more rapid decrease of the fluctuation
behavior fully coherent with the correspondingg( f ) evolu-
tion given in Fig. 3. This is actually shown by plotting in Fig
4 the ~high stretching! expected behavior of the fluctuation
as obtained by Eqs.~11! and ~12! obtained by numerica
differentiation of theg( f ) data in theh l.0.3 regime~see
Fig. 3!.

On the other hand, the unperturbed end-to-end vector
tribution of the chain is needed to estimate the internal fo
at fixed end-to-end distance according to Eq.~6!. It is useful
to note that the distribution function ofR in the presence of
stretching forces, namely

e
FIG. 4. Fluctuations of the end-to-end vector components b

parallel~lower! and perpendicular~upper! to the stretching force of
a 400 segment EV chain. The dashed lines ( – – – ) give the R
prediction. The continuous line (—) results from exploiting the link
between the fixed-f end-to-end fluctuations and theg( f ) behavior
for the rangeh l.0.2, which is shown in Fig. 3~see also text!.
Wf~R,N!5

E drN d~rN2r02R!exp@2b~U~rN!2~rN2r0!•f!#

E drN exp$2b@U~rN!2~rN2r0!•f#%

~46!
th

. 5
not

ccur

ro
ew

the
can also be used to get the distribution in the absenc
force, i.e.,W0(R,N) of Eq. ~3!, by exploiting the identity

W0~R,N!5
Zf

Z
exp~2bR•f!Wf~R,N!, ~47!

where theZ andZf partition functions are defined by Eqs.~3!
and~7!, respectively. By superimposing the distributionsW0
obtained by Eq.~47! within our set of simulations at variou
fixed forces, the profile ofW0 was retrieved over a larg
range ofR values as shown in Fig. 5. This combination
biased samplings leads to a precise estimate of the dist
tion up to end-to-end distances ofR'4.5R0, i.e., up to ex-
of

u-

tensions of the order of 40% of the chain contour leng
where the probability density is reduced to 1029 of its maxi-
mum value. As expected, the RGT curve shown in Fig
matches very well our data as long as FE effects are
showing up. The crossover to the FE regime seems to o
somewhere betweenR52R0 andR53R0 where we observe
that W0(R,N) starts decreasing more rapidly towards ze
than expected from RGT. In order to reproduce this n
behavior by a smooth analytic function~to ease further deri-
vation!, we used forR.2R0 the same RGT expression@Eq.
~13!# but with the exponentd and the coefficientD consid-
ered as free fitting parameters. The inset of Fig. 5 shows
resulting best fitting curve describing the data aboveR
52R0.
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The fixed-R forceh(R) of the necklace chain can now b
obtained according to Eq.~6! by combining two curves ob
tained by derivation of lnW0 functions, the first one on the
basis the RGT function and the second one using the ad
fitting curve of lnW0 in the FE regime. The resulting func
tion h(R) is described by two portions valid in differentR
domains, as shown in Fig. 6. The change of sign ax
'0.35 shows the specific distance where entropic for
equilibrate.

V. CONCLUSIONS

The distinction between fixed force and fixed end-to-e
vector single chain ensembles was pointed out in this pa

FIG. 5. The equilibrium end-to-end vector distribution for
400-segment excluded volume chain. The line shows the R
model prediction for small and intermediate extensions. In the in
we show the same function for extension values correspondin
rarely occurring highly stretched configurations so that FE de
tions from the RGT prediction can be detected in our MC data

FIG. 6. Force-extension relationships for the necklace EV mo
in the fixed f and the fixedR ensembles. The MC results fo
g21(R) illustrate the elasticity law in thef ensemble (ssss).
For h(R), the internal force in the fixed-R ensemble, the RGT pre
diction is represented (—) over the whole range ofx5R/R0 while
the finite extensibility prediction using the fitting curve used in F
5 ~see text! is shown in the domain ofx.1 ( – – – ): the actual
evolution of h(R) in the simulation follows a smooth crossov
from the RGT curve to the second one.
oc

s

d
er

in connection with the single polymer elasticity law at
above the theta temperature. Actually, our approach has b
more general: we have given some general tools to appr
ate, for a generic observableO, the distinction between av
erages computed in the two stretched chain conjugated
sembles. We found that the correction termDO can take the
form of an infinite series, thenth term being the product o
an averagenth order fluctuation term in the fixedf ensemble
and a nth order gradient respect to the end-to-end vec
components which is computed at the average end-to-
vector valuê R& f . This series always converges for Gaus
ian chains~because of the fluctuation term only! while, for
chains in good solvent represented by the RGT theory
converges only in the high stretching regime (R.R0).

The elasticity law in the stress ensembleRf5g( f ) plays a
central role in this paper. When convergence in theD f ex-
pansion is sufficiently fast, this ensemble difference in
force can be estimated using the leading termD f

(2) given by
Eq. ~43!. In this expression, fluctuations terms can be eva
ated fromRf5g( f ) using Eqs.~11! and ~12! while the gra-
dient terms requiring the fixed-R elasticity lawf R5h(R) can
be approximated byf 5g21(R). In this way, we could estab
lish the following main results. Quite generally, ideal chai
lead to similar linear elasticity laws up to the FE regim
where marginal differences ofO(1/N), already discussed by
Flory @1#, are detected.

Much stronger effects are noticed for chains in good s
vent, with the largest deviations between ensembles w
the ~average! end-to-end distance lies belowR0, the un-
stretched average value. This situation is however of li
experimental relevance because confinement effects sh
be added to the description. For polymers in good solven
the stretching regimeR>R0, one finds a relative difference
in the force between ensembles which decreases from 2
down to 2% as the distance grows fromR0 to 3R0.

Stress-strain single chain laws are actually being pro
by new experimental set-ups allowing micro-manipulatio
which either control the end-to-end vector or the stretch
force. The experimental situation differs in various aspe
from the idealized ensemble description of textbooks wh
is adopted in the present paper. To mention a few, cons
that elasticity measurements are often done dynamicall
finite velocity, that corrections must take into account t
finite compliance of the microlever handling the polymer e
when measuring the force or that confinement effects m
play a role. However, our analysis remains largely relev
and could further be modified to take some of the abo
effects into account.

A direct experimental test of the single EV chain elast
ity law in the Pincus blob regime remains to be done. W
the present work suggests is that experimentalists m
probe in this stretching regime different variants of the el
ticity law depending upon the constraints introduced by s
cific set-ups ranging from fixed-f to fixed-R conditions.
About the much studied biological macromolecules wh
specific intramolecular forces resist to the stretching for
applied at chain ends, ensemble effects depending on
nature of the applied constraint should be considered in
molecular interpretation of elasticity data.

We note finally that the existence of specific EV sing
chain elasticity laws for different single stretched chain e

T
t,
to
-

el

.
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sembles may have interesting implications for the elastic
havior of swollen networks where the nature of the junct
constraints is at the heart of network elasticity theories.
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